spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Nan Zhu <zhunanmcg...@gmail.com>
Subject Re: debug standalone Spark jobs?
Date Sun, 05 Jan 2014 15:34:06 GMT
Ah, yes, I think application logs really help  

Thank you  

--  
Nan Zhu


On Sunday, January 5, 2014 at 10:13 AM, Sriram Ramachandrasekaran wrote:

> Did you get to look at the spark worker logs? They would be at SPARK_HOME/logs/
> Also, you should look at the application logs itself. They would be under SPARK_HOME/work/APP_ID
>  
>  
>  
> On Sun, Jan 5, 2014 at 8:36 PM, Nan Zhu <zhunanmcgill@gmail.com (mailto:zhunanmcgill@gmail.com)>
wrote:
> > Hi, all  
> >  
> > I’m trying to run a standalone job in a Spark cluster on EC2,  
> >  
> > obviously there is some bug in my code, after the job runs for several minutes,
it failed with an exception   
> >  
> >  
> > Loading /usr/share/sbt/bin/sbt-launch-lib.bash
> >  
> >  
> > [info] Set current project to rec_system (in build file:/home/ubuntu/rec_sys/)
> >  
> >  
> > [info] Running general.NetflixRecommender algorithm.SparkALS -b 20 -i 20 -l 0.005
-m spark://172.31.32.76:7077 (http://172.31.32.76:7077) --moviepath s3n://trainingset/netflix/training_set/*
-o s3n://training_set/netflix/training_set/output.txt --rank 20 -r s3n://trainingset/netflix/training_set/mv_*
> >  
> >  
> > log4j:WARN No appenders could be found for logger (akka.event.slf4j.Slf4jEventHandler).
> >  
> >  
> > log4j:WARN Please initialize the log4j system properly.
> >  
> >  
> > log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
> >  
> >  
> > failed to init the engine class
> >  
> >  
> > org.apache.spark.SparkException: Job aborted: Task 43.0:9 failed more than 4 times
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:827)
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:825)
> >  
> >  
> > at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
> >  
> >  
> > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:825)
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:440)
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler.org (http://org.apache.spark.scheduler.DAGScheduler.org)$apache$spark$scheduler$DAGScheduler$$run(DAGScheduler.scala:502)
> >  
> >  
> > at org.apache.spark.scheduler.DAGScheduler$$anon$1.run(DAGScheduler.scala:157)
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> >  
> > However, this information does not mean anything to me, how can I print out the
detailed log information in console
> >  
> > I’m not sure about the reasons of those WARNs from log4j, I received the same
WARNING when I run spark-shell, while in there, I can see detailed information like which
task is running, etc.  
> >  
> > Best,
> >  
> > --  
> > Nan Zhu
> >  
>  
>  
>  
> --  
> It's just about how deep your longing is!


Mime
View raw message