spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Sadhan Sood <sadhan.s...@gmail.com>
Subject Re: SparkSQL exception on cached parquet table
Date Thu, 20 Nov 2014 20:18:39 GMT
Thanks Michael, opened this https://issues.apache.org/jira/browse/SPARK-4520

On Thu, Nov 20, 2014 at 2:59 PM, Michael Armbrust <michael@databricks.com>
wrote:

> Can you open a JIRA?
>
> On Thu, Nov 20, 2014 at 10:39 AM, Sadhan Sood <sadhan.sood@gmail.com>
> wrote:
>
>> I am running on master, pulled yesterday I believe but saw the same issue
>> with 1.2.0
>>
>> On Thu, Nov 20, 2014 at 1:37 PM, Michael Armbrust <michael@databricks.com
>> > wrote:
>>
>>> Which version are you running on again?
>>>
>>> On Thu, Nov 20, 2014 at 8:17 AM, Sadhan Sood <sadhan.sood@gmail.com>
>>> wrote:
>>>
>>>> Also attaching the parquet file if anyone wants to take a further look.
>>>>
>>>> On Thu, Nov 20, 2014 at 8:54 AM, Sadhan Sood <sadhan.sood@gmail.com>
>>>> wrote:
>>>>
>>>>> So, I am seeing this issue with spark sql throwing an exception when
>>>>> trying to read selective columns from a thrift parquet file and also
when
>>>>> caching them:
>>>>> On some further digging, I was able to narrow it down to at-least one
>>>>> particular column type: map<string, set<string>> to be causing
this issue.
>>>>> To reproduce this I created a test thrift file with a very basic schema
and
>>>>> stored some sample data in a parquet file:
>>>>>
>>>>> Test.thrift
>>>>> ===========
>>>>> typedef binary SomeId
>>>>>
>>>>> enum SomeExclusionCause {
>>>>>   WHITELIST = 1,
>>>>>   HAS_PURCHASE = 2,
>>>>> }
>>>>>
>>>>> struct SampleThriftObject {
>>>>>   10: string col_a;
>>>>>   20: string col_b;
>>>>>   30: string col_c;
>>>>>   40: optional map<SomeExclusionCause, set<SomeId>> col_d;
>>>>> }
>>>>> =============
>>>>>
>>>>> And loading the data in spark through schemaRDD:
>>>>>
>>>>> import org.apache.spark.sql.SchemaRDD
>>>>> val sqlContext = new org.apache.spark.sql.SQLContext(sc);
>>>>> val parquetFile = "/path/to/generated/parquet/file"
>>>>> val parquetFileRDD = sqlContext.parquetFile(parquetFile)
>>>>> parquetFileRDD.printSchema
>>>>> root
>>>>>  |-- col_a: string (nullable = true)
>>>>>  |-- col_b: string (nullable = true)
>>>>>  |-- col_c: string (nullable = true)
>>>>>  |-- col_d: map (nullable = true)
>>>>>  |    |-- key: string
>>>>>  |    |-- value: array (valueContainsNull = true)
>>>>>  |    |    |-- element: string (containsNull = false)
>>>>>
>>>>> parquetFileRDD.registerTempTable("test")
>>>>> sqlContext.cacheTable("test")
>>>>> sqlContext.sql("select col_a from test").collect() <-- see the
>>>>> exception stack here
>>>>>
>>>>> org.apache.spark.SparkException: Job aborted due to stage failure:
>>>>> Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0
in
>>>>> stage 0.0 (TID 0, localhost): parquet.io.ParquetDecodingException: Can
not
>>>>> read value at 0 in block -1 in file file:/tmp/xyz/part-r-00000.parquet
>>>>> at
>>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213)
>>>>> at
>>>>> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204)
>>>>> at
>>>>> org.apache.spark.rdd.NewHadoopRDD$$anon$1.hasNext(NewHadoopRDD.scala:145)
>>>>> at
>>>>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>>>>> at scala.collection.Iterator$$anon$14.hasNext(Iterator.scala:388)
>>>>> at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>>>> at
>>>>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>>>> at
>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>>>> at
>>>>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>>>> at scala.collection.TraversableOnce$class.to
>>>>> (TraversableOnce.scala:273)
>>>>> at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>>>> at
>>>>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>>>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>>>> at
>>>>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>>>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>>>> at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780)
>>>>> at org.apache.spark.rdd.RDD$$anonfun$16.apply(RDD.scala:780)
>>>>> at
>>>>> org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223)
>>>>> at
>>>>> org.apache.spark.SparkContext$$anonfun$runJob$3.apply(SparkContext.scala:1223)
>>>>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:56)
>>>>> at
>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195)
>>>>> at
>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>> at
>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>> at java.lang.Thread.run(Thread.java:745)
>>>>>
>>>>> Caused by: java.lang.ArrayIndexOutOfBoundsException: -1
>>>>> at java.util.ArrayList.elementData(ArrayList.java:418)
>>>>> at java.util.ArrayList.get(ArrayList.java:431)
>>>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
>>>>> at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
>>>>> at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80)
>>>>> at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74)
>>>>> at
>>>>> parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282)
>>>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131)
>>>>> at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96)
>>>>> at
>>>>> parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136)
>>>>> at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96)
>>>>> at
>>>>> parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126)
>>>>> at
>>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193)
>>>>> ... 27 more
>>>>>
>>>>> If you take out the col_d from the thrift file, the problem goes away.
>>>>> The problem also shows up when trying to read the particular column without
>>>>> caching the table first. The same file can be dumped/read using
>>>>> parquet-tools just fine. Here is the file dump using parquet-tools:
>>>>>
>>>>> row group 0
>>>>> --------------------------------------------------------------------------------
>>>>> col_a:           BINARY UNCOMPRESSED DO:0 FPO:4 SZ:89/89/1.00 VC:9 ENC
[more]...
>>>>> col_b:           BINARY UNCOMPRESSED DO:0 FPO:93 SZ:89/89/1.00 VC:9 EN
[more]...
>>>>> col_c:           BINARY UNCOMPRESSED DO:0 FPO:182 SZ:89/89/1.00 VC:9
E [more]...
>>>>> col_d:
>>>>> .map:
>>>>> ..key:           BINARY UNCOMPRESSED DO:0 FPO:271 SZ:29/29/1.00 VC:9
E [more]...
>>>>> ..value:
>>>>> ...value_tuple:  BINARY UNCOMPRESSED DO:0 FPO:300 SZ:29/29/1.00 VC:9
E [more]...
>>>>>
>>>>>     col_a TV=9 RL=0 DL=1
>>>>>     ----------------------------------------------------------------------------
>>>>>     page 0:  DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
>>>>>
>>>>>     col_b TV=9 RL=0 DL=1
>>>>>     ----------------------------------------------------------------------------
>>>>>     page 0:  DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
>>>>>
>>>>>     col_c TV=9 RL=0 DL=1
>>>>>     ----------------------------------------------------------------------------
>>>>>     page 0:  DLE:RLE RLE:BIT_PACKED VLE:PLAIN SZ:60 VC:9
>>>>>
>>>>>     col_d.map.key TV=9 RL=1 DL=2
>>>>>     ----------------------------------------------------------------------------
>>>>>     page 0:  DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9
>>>>>
>>>>>     col_d.map.value.value_tuple TV=9 RL=2 DL=4
>>>>>     ----------------------------------------------------------------------------
>>>>>     page 0:  DLE:RLE RLE:RLE VLE:PLAIN SZ:12 VC:9
>>>>>
>>>>> BINARY col_a
>>>>> --------------------------------------------------------------------------------
>>>>> *** row group 1 of 1, values 1 to 9 ***
>>>>> value 1: R:1 D:1 V:a1
>>>>> value 2: R:1 D:1 V:a2
>>>>> value 3: R:1 D:1 V:a3
>>>>> value 4: R:1 D:1 V:a4
>>>>> value 5: R:1 D:1 V:a5
>>>>> value 6: R:1 D:1 V:a6
>>>>> value 7: R:1 D:1 V:a7
>>>>> value 8: R:1 D:1 V:a8
>>>>> value 9: R:1 D:1 V:a9
>>>>>
>>>>> BINARY col_b
>>>>> --------------------------------------------------------------------------------
>>>>> *** row group 1 of 1, values 1 to 9 ***
>>>>> value 1: R:1 D:1 V:b1
>>>>> value 2: R:1 D:1 V:b2
>>>>> value 3: R:1 D:1 V:b3
>>>>> value 4: R:1 D:1 V:b4
>>>>> value 5: R:1 D:1 V:b5
>>>>> value 6: R:1 D:1 V:b6
>>>>> value 7: R:1 D:1 V:b7
>>>>> value 8: R:1 D:1 V:b8
>>>>> value 9: R:1 D:1 V:b9
>>>>>
>>>>> BINARY col_c
>>>>> --------------------------------------------------------------------------------
>>>>> *** row group 1 of 1, values 1 to 9 ***
>>>>> value 1: R:1 D:1 V:c1
>>>>> value 2: R:1 D:1 V:c2
>>>>> value 3: R:1 D:1 V:c3
>>>>> value 4: R:1 D:1 V:c4
>>>>> value 5: R:1 D:1 V:c5
>>>>> value 6: R:1 D:1 V:c6
>>>>> value 7: R:1 D:1 V:c7
>>>>> value 8: R:1 D:1 V:c8
>>>>> value 9: R:1 D:1 V:c9
>>>>>
>>>>> BINARY col_d.map.key
>>>>> --------------------------------------------------------------------------------
>>>>> *** row group 1 of 1, values 1 to 9 ***
>>>>> value 1: R:0 D:0 V:<null>
>>>>> value 2: R:0 D:0 V:<null>
>>>>> value 3: R:0 D:0 V:<null>
>>>>> value 4: R:0 D:0 V:<null>
>>>>> value 5: R:0 D:0 V:<null>
>>>>> value 6: R:0 D:0 V:<null>
>>>>> value 7: R:0 D:0 V:<null>
>>>>> value 8: R:0 D:0 V:<null>
>>>>> value 9: R:0 D:0 V:<null>
>>>>>
>>>>> BINARY col_d.map.value.value_tuple
>>>>> --------------------------------------------------------------------------------
>>>>> *** row group 1 of 1, values 1 to 9 ***
>>>>> value 1: R:0 D:0 V:<null>
>>>>> value 2: R:0 D:0 V:<null>
>>>>> value 3: R:0 D:0 V:<null>
>>>>> value 4: R:0 D:0 V:<null>
>>>>> value 5: R:0 D:0 V:<null>
>>>>> value 6: R:0 D:0 V:<null>
>>>>> value 7: R:0 D:0 V:<null>
>>>>> value 8: R:0 D:0 V:<null>
>>>>> value 9: R:0 D:0 V:<null>
>>>>>
>>>>>
>>>>> I am happy to provide more information but any help is appreciated.
>>>>>
>>>>>
>>>>> On Sun, Nov 16, 2014 at 7:40 PM, Sadhan Sood <sadhan.sood@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> Hi Cheng,
>>>>>>
>>>>>> I tried reading the parquet file(on which we were getting the
>>>>>> exception) through parquet-tools and it is able to dump the file
and I can
>>>>>> read the metadata, etc. I also loaded the file through hive table
and can
>>>>>> run a table scan query on it as well. Let me know if I can do more
to help
>>>>>> resolve the problem, I'll run it through a debugger and see if I
can get
>>>>>> more information on it in the meantime.
>>>>>>
>>>>>> Thanks,
>>>>>> Sadhan
>>>>>>
>>>>>> On Sun, Nov 16, 2014 at 4:35 AM, Cheng Lian <lian.cs.zju@gmail.com>
>>>>>> wrote:
>>>>>>
>>>>>>>  (Forgot to cc user mail list)
>>>>>>>
>>>>>>>
>>>>>>> On 11/16/14 4:59 PM, Cheng Lian wrote:
>>>>>>>
>>>>>>> Hey Sadhan,
>>>>>>>
>>>>>>>  Thanks for the additional information, this is helpful. Seems
that
>>>>>>> some Parquet internal contract was broken, but I'm not sure whether
it's
>>>>>>> caused by Spark SQL or Parquet, or even maybe the Parquet file
itself was
>>>>>>> damaged somehow. I'm investigating this. In the meanwhile, would
you mind
>>>>>>> to help to narrow down the problem by trying to scan exactly
the same
>>>>>>> Parquet file with some other systems (e.g. Hive or Impala)? If
other
>>>>>>> systems work, then there must be something wrong with Spark SQL.
>>>>>>>
>>>>>>>  Cheng
>>>>>>>
>>>>>>> On Sun, Nov 16, 2014 at 1:19 PM, Sadhan Sood <sadhan.sood@gmail.com>
>>>>>>> wrote:
>>>>>>>
>>>>>>>> Hi Cheng,
>>>>>>>>
>>>>>>>>  Thanks for your response. Here is the stack trace from yarn
logs:
>>>>>>>>
>>>>>>>>  Caused by: java.lang.ArrayIndexOutOfBoundsException: -1
>>>>>>>>         at java.util.ArrayList.elementData(ArrayList.java:418)
>>>>>>>>         at java.util.ArrayList.get(ArrayList.java:431)
>>>>>>>>         at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
>>>>>>>>         at parquet.io.GroupColumnIO.getLast(GroupColumnIO.java:95)
>>>>>>>>         at parquet.io.PrimitiveColumnIO.getLast(PrimitiveColumnIO.java:80)
>>>>>>>>         at parquet.io.PrimitiveColumnIO.isLast(PrimitiveColumnIO.java:74)
>>>>>>>>         at parquet.io.RecordReaderImplementation.<init>(RecordReaderImplementation.java:282)
>>>>>>>>         at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:131)
>>>>>>>>         at parquet.io.MessageColumnIO$1.visit(MessageColumnIO.java:96)
>>>>>>>>         at parquet.filter2.compat.FilterCompat$NoOpFilter.accept(FilterCompat.java:136)
>>>>>>>>         at parquet.io.MessageColumnIO.getRecordReader(MessageColumnIO.java:96)
>>>>>>>>         at parquet.hadoop.InternalParquetRecordReader.checkRead(InternalParquetRecordReader.java:126)
>>>>>>>>         at parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:193)
>>>>>>>>         ... 26 more
>>>>>>>>
>>>>>>>>
>>>>>>>> On Sat, Nov 15, 2014 at 9:28 AM, Cheng Lian <lian.cs.zju@gmail.com>
>>>>>>>> wrote:
>>>>>>>>
>>>>>>>>>  Hi Sadhan,
>>>>>>>>>
>>>>>>>>> Could you please provide the stack trace of the
>>>>>>>>> ArrayIndexOutOfBoundsException (if any)? The reason why
the first
>>>>>>>>> query succeeds is that Spark SQL doesn’t bother reading
all data from the
>>>>>>>>> table to give COUNT(*). In the second case, however,
the whole
>>>>>>>>> table is asked to be cached lazily via the cacheTable
call, thus
>>>>>>>>> it’s scanned to build the in-memory columnar cache.
Then thing went wrong
>>>>>>>>> while scanning this LZO compressed Parquet file. But
unfortunately the
>>>>>>>>> stack trace at hand doesn’t indicate the root cause.
>>>>>>>>>
>>>>>>>>> Cheng
>>>>>>>>>
>>>>>>>>> On 11/15/14 5:28 AM, Sadhan Sood wrote:
>>>>>>>>>
>>>>>>>>> While testing SparkSQL on a bunch of parquet files (basically
used
>>>>>>>>> to be a partition for one of our hive tables), I encountered
this error:
>>>>>>>>>
>>>>>>>>>  import org.apache.spark.sql.SchemaRDD
>>>>>>>>> import org.apache.hadoop.fs.FileSystem;
>>>>>>>>> import org.apache.hadoop.conf.Configuration;
>>>>>>>>> import org.apache.hadoop.fs.Path;
>>>>>>>>>
>>>>>>>>>  val sqlContext = new org.apache.spark.sql.SQLContext(sc)
>>>>>>>>>
>>>>>>>>>  val parquetFileRDD = sqlContext.parquetFile(parquetFile)
>>>>>>>>> parquetFileRDD.registerTempTable("xyz_20141109")
>>>>>>>>> sqlContext.sql("SELECT count(*)  FROM xyz_20141109").collect()
<--
>>>>>>>>> works fine
>>>>>>>>> sqlContext.cacheTable("xyz_20141109")
>>>>>>>>> sqlContext.sql("SELECT count(*)  FROM xyz_20141109").collect()
<--
>>>>>>>>> fails with an exception
>>>>>>>>>
>>>>>>>>>   parquet.io.ParquetDecodingException: Can not read value
at 0 in
>>>>>>>>> block -1 in file
>>>>>>>>> hdfs://xxxxxxxx::9000/event_logs/xyz/20141109/part-00009359b87ae-a949-3ded-ac3e-3a6bda3a4f3a-r-00009.lzo.parquet
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> parquet.hadoop.InternalParquetRecordReader.nextKeyValue(InternalParquetRecordReader.java:213)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> parquet.hadoop.ParquetRecordReader.nextKeyValue(ParquetRecordReader.java:204)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.NewHadoopRDD$anon$1.hasNext(NewHadoopRDD.scala:145)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:39)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> scala.collection.Iterator$anon$11.hasNext(Iterator.scala:327)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> scala.collection.Iterator$anon$14.hasNext(Iterator.scala:388)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.sql.columnar.InMemoryRelation$anonfun$3$anon$1.hasNext(InMemoryColumnarTableScan.scala:136)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:248)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:163)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)
>>>>>>>>>
>>>>>>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:228)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
>>>>>>>>>
>>>>>>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
>>>>>>>>>
>>>>>>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:263)
>>>>>>>>>
>>>>>>>>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:230)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>>>>>>>>
>>>>>>>>>         at org.apache.spark.scheduler.Task.run(Task.scala:56)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:195)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>>>>>>>>>
>>>>>>>>>         at
>>>>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>>>>>>>>>
>>>>>>>>>         at java.lang.Thread.run(Thread.java:745)
>>>>>>>>>
>>>>>>>>> Caused by: java.lang.ArrayIndexOutOfBoundsException
>>>>>>>>>
>>>>>>>>>   ​
>>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>>
>>>> ---------------------------------------------------------------------
>>>> To unsubscribe, e-mail: user-unsubscribe@spark.apache.org
>>>> For additional commands, e-mail: user-help@spark.apache.org
>>>>
>>>
>>>
>>
>

Mime
View raw message