spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Priya Ch <learnings.chitt...@gmail.com>
Subject Re: TF-IDF from spark-1.1.0 not working on cluster mode
Date Fri, 09 Jan 2015 13:03:59 GMT
Please find the attached worker log.
 I could see stream closed exception

On Wed, Jan 7, 2015 at 10:51 AM, Xiangrui Meng <mengxr@gmail.com> wrote:

> Could you attach the executor log? That may help identify the root
> cause. -Xiangrui
>
> On Mon, Jan 5, 2015 at 11:12 PM, Priya Ch <learnings.chitturi@gmail.com>
> wrote:
> > Hi All,
> >
> > Word2Vec and TF-IDF algorithms in spark mllib-1.1.0 are working only in
> > local mode and not on distributed mode. Null pointer exception has been
> > thrown. Is this a bug in spark-1.1.0 ?
> >
> > Following is the code:
> >   def main(args:Array[String])
> >   {
> >      val conf=new SparkConf
> >      val sc=new SparkContext(conf)
> >      val
> >
> documents=sc.textFile("hdfs://IMPETUS-DSRV02:9000/nlp/sampletext").map(_.split("
> > ").toSeq)
> >      val hashingTF = new HashingTF()
> >      val tf= hashingTF.transform(documents)
> >      tf.cache()
> >     val idf = new IDF().fit(tf)
> >     val tfidf = idf.transform(tf)
> >      val rdd=tfidf.map { vec => println("vector is...."+vec)
> >                                 (10)
> >                        }
> >      rdd.saveAsTextFile("/home/padma/usecase")
> >
> >   }
> >
> >
> >
> >
> > Exception thrown:
> >
> > 15/01/06 12:36:09 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0
> with
> > 2 tasks
> > 15/01/06 12:36:10 INFO cluster.SparkDeploySchedulerBackend: Registered
> > executor:
> > Actor[akka.tcp://
> sparkExecutor@IMPETUS-DSRV05.impetus.co.in:33898/user/Executor#-1525890167
> ]
> > with ID 0
> > 15/01/06 12:36:10 INFO scheduler.TaskSetManager: Starting task 0.0 in
> stage
> > 0.0 (TID 0, IMPETUS-DSRV05.impetus.co.in, NODE_LOCAL, 1408 bytes)
> > 15/01/06 12:36:10 INFO scheduler.TaskSetManager: Starting task 1.0 in
> stage
> > 0.0 (TID 1, IMPETUS-DSRV05.impetus.co.in, NODE_LOCAL, 1408 bytes)
> > 15/01/06 12:36:10 INFO storage.BlockManagerMasterActor: Registering block
> > manager IMPETUS-DSRV05.impetus.co.in:35130 with 2.1 GB RAM
> > 15/01/06 12:36:12 INFO network.ConnectionManager: Accepted connection
> from
> > [IMPETUS-DSRV05.impetus.co.in/192.168.145.195:46888]
> > 15/01/06 12:36:12 INFO network.SendingConnection: Initiating connection
> to
> > [IMPETUS-DSRV05.impetus.co.in/192.168.145.195:35130]
> > 15/01/06 12:36:12 INFO network.SendingConnection: Connected to
> > [IMPETUS-DSRV05.impetus.co.in/192.168.145.195:35130], 1 messages pending
> > 15/01/06 12:36:12 INFO storage.BlockManagerInfo: Added
> broadcast_1_piece0 in
> > memory on IMPETUS-DSRV05.impetus.co.in:35130 (size: 2.1 KB, free: 2.1
> GB)
> > 15/01/06 12:36:12 INFO storage.BlockManagerInfo: Added
> broadcast_0_piece0 in
> > memory on IMPETUS-DSRV05.impetus.co.in:35130 (size: 10.1 KB, free: 2.1
> GB)
> > 15/01/06 12:36:13 INFO storage.BlockManagerInfo: Added rdd_3_1 in memory
> on
> > IMPETUS-DSRV05.impetus.co.in:35130 (size: 280.0 B, free: 2.1 GB)
> > 15/01/06 12:36:13 INFO storage.BlockManagerInfo: Added rdd_3_0 in memory
> on
> > IMPETUS-DSRV05.impetus.co.in:35130 (size: 416.0 B, free: 2.1 GB)
> > 15/01/06 12:36:13 WARN scheduler.TaskSetManager: Lost task 1.0 in stage
> 0.0
> > (TID 1, IMPETUS-DSRV05.impetus.co.in): java.lang.NullPointerException:
> >         org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
> >         org.apache.spark.rdd.RDD$$anonfun$13.apply(RDD.scala:596)
> >
> > org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35)
> >         org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262)
> >         org.apache.spark.rdd.RDD.iterator(RDD.scala:229)
> >
>  org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:62)
> >         org.apache.spark.scheduler.Task.run(Task.scala:54)
> >
> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
> >
> >
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110)
> >
> >
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603)
> >         java.lang.Thread.run(Thread.java:722)
> >
> >
> > Thanks,
> > Padma Ch
>

Mime
View raw message