spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Ilya Ganelin <ilgan...@gmail.com>
Subject Re: spark ignoring all memory settings and defaulting to 512MB?
Date Thu, 01 Jan 2015 07:41:35 GMT
Welcome to Spark. What's more fun is that setting controls memory on the
executors but if you want to set memory limit on the driver you need to
configure it as a parameter of the spark-submit script. You also set
num-executors and executor-cores on the spark submit call.

See both the Spark tuning guide and the Spark configuration page for more
discussion of stuff like this.

W.r.t. The spark memory option, my understanding is that parameter has been
deprecated (the SPARK_EXE_MEM) and the documentation is probably stale.
Good starting point for cleanup would probably be to update that :-).
On Thu, Jan 1, 2015 at 1:45 AM Kevin Burton <burton@spinn3r.com> wrote:

> wow. Just figured it out:
>
>         conf.set( "spark.executor.memory", "2g");
>
> I have to set it in the Job… that’s really counter intuitive.  Especially
> because the documentation in spark-env.sh says the exact opposite.
>
> What’s the resolution here.  This seems like a mess. I’d propose a
> solution to clean it up but I don’t know where to begin.
>
> On Wed, Dec 31, 2014 at 10:35 PM, Kevin Burton <burton@spinn3r.com> wrote:
>
>> This is really weird and I’m surprised no one has found this issue yet.
>>
>> I’ve spent about an hour or more trying to debug this :-(
>>
>> My spark install is ignoring ALL my memory settings.  And of course my
>> job is running out of memory.
>>
>> The default is 512MB so pretty darn small.
>>
>> The worker and master start up and both use 512M
>>
>> This alone is very weird and poor documentation IMO because:
>>
>>  "SPARK_WORKER_MEMORY, to set how much total memory workers have to give
>> executors (e.g. 1000m, 2g)”
>>
>> … so if it’s giving it to executors, AKA the memory executors run with,
>> then it should be SPARK_EXECUTOR_MEMORY…
>>
>> … and the worker actually uses SPARK_DAEMON memory.
>>
>> but actually I’m right.  It IS SPARK_EXECUTOR_MEMORY… according to
>> bin/spark-class
>>
>> … but, that’s not actually being used :-(
>>
>> that setting is just flat out begin ignored and it’s just using 512MB.
>> So all my jobs fail.
>>
>> … and I write an ‘echo’ so I could trace the spark-class script to see
>> what the daemons are actually being run with and spark-class wasn’t being
>> called with and nothing is logged for the coarse grained executor.  I guess
>> it’s just inheriting the JVM opts from it’s parent and Java is launching
>> the process directly?
>>
>> This is a nightmare :(
>>
>> --
>>
>> Founder/CEO Spinn3r.com
>> Location: *San Francisco, CA*
>> blog: http://burtonator.wordpress.com
>> … or check out my Google+ profile
>> <https://plus.google.com/102718274791889610666/posts>
>> <http://spinn3r.com>
>>
>>
>
>
> --
>
> Founder/CEO Spinn3r.com
> Location: *San Francisco, CA*
> blog: http://burtonator.wordpress.com
> … or check out my Google+ profile
> <https://plus.google.com/102718274791889610666/posts>
> <http://spinn3r.com>
>
>

Mime
View raw message