spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Guillermo Ortiz <konstt2...@gmail.com>
Subject Re: Uncaught exception in thread delete Spark local dirs
Date Sat, 27 Jun 2015 10:02:18 GMT
I changed the variable name and I got the same error.

2015-06-27 11:36 GMT+02:00 Tathagata Das <tdas@databricks.com>:

> Well, though randomly chosen, SPARK_CLASSPATH is a recognized env variable
> that is picked up by spark-submit. That is what was used pre-Spark-1.0, but
> got deprecated after that. Mind renamign that variable and trying it out
> again? At least it will reduce one possible source of problem.
>
> TD
>
> On Sat, Jun 27, 2015 at 2:32 AM, Guillermo Ortiz <konstt2000@gmail.com>
> wrote:
>
>> I'm checking the logs in YARN and I found this error as well
>>
>> Application application_1434976209271_15614 failed 2 times due to AM
>> Container for appattempt_1434976209271_15614_000002 exited with exitCode:
>> 255
>>
>>
>> Diagnostics: Exception from container-launch.
>> Container id: container_1434976209271_15614_02_000001
>> Exit code: 255
>> Stack trace: ExitCodeException exitCode=255:
>> at org.apache.hadoop.util.Shell.runCommand(Shell.java:538)
>> at org.apache.hadoop.util.Shell.run(Shell.java:455)
>> at
>> org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715)
>> at
>> org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.launchContainer(LinuxContainerExecutor.java:293)
>> at
>> org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
>> at
>> org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
>> at java.util.concurrent.FutureTask.run(FutureTask.java:262)
>> at
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>> at
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>> at java.lang.Thread.run(Thread.java:745)
>> Shell output: Requested user hdfs is not whitelisted and has id 496,which
>> is below the minimum allowed 1000
>> Container exited with a non-zero exit code 255
>> Failing this attempt. Failing the application.
>>
>> 2015-06-27 11:25 GMT+02:00 Guillermo Ortiz <konstt2000@gmail.com>:
>>
>>> Well SPARK_CLASSPATH it's just a random name, the complete script is
>>> this:
>>>
>>> export HADOOP_CONF_DIR=/etc/hadoop/conf
>>>
>>> SPARK_CLASSPATH="file:/usr/metrics/conf/elasticSearch.properties,file:/usr/metrics/conf/redis.properties,/etc/spark/conf.cloudera.spark_on_yarn/yarn-conf/"
>>> for lib in `ls /usr/metrics/lib/*.jar`
>>> do
>>>         if [ -z "$SPARK_CLASSPATH" ]; then
>>> SPARK_CLASSPATH=$lib
>>> else
>>> SPARK_CLASSPATH=$SPARK_CLASSPATH,$lib
>>> fi
>>> done
>>> spark-submit --name "Metrics"....
>>>
>>> I need to add all the jars as you know,, maybe it was a bad name
>>> SPARK_CLASSPATH
>>>
>>> The code doesn't have any stateful operation, yo I guess that it¡s okay
>>> doesn't have checkpoint. I have executed hundres of times thiscode in VM
>>> from Cloudera and never got this error.
>>>
>>> 2015-06-27 11:21 GMT+02:00 Tathagata Das <tdas@databricks.com>:
>>>
>>>> 1. you need checkpointing mostly for recovering from driver failures,
>>>> and in some cases also for some stateful operations.
>>>>
>>>> 2. Could you try not using the SPARK_CLASSPATH environment variable.
>>>>
>>>> TD
>>>>
>>>> On Sat, Jun 27, 2015 at 1:00 AM, Guillermo Ortiz <konstt2000@gmail.com>
>>>> wrote:
>>>>
>>>>> I don't have any checkpoint on my code. Really, I don't have to save
>>>>> any state. It's just a log processing of a PoC.
>>>>> I have been testing the code in a VM from Cloudera and I never got
>>>>> that error.. Not it's a real cluster.
>>>>>
>>>>> The command to execute Spark
>>>>> spark-submit --name "PoC Logs" --master yarn-client --class
>>>>> com.metrics.MetricsSpark --jars $SPARK_CLASSPATH --executor-memory 1g
>>>>> /usr/metrics/ex/metrics-spark.jar $1 $2 $3
>>>>>
>>>>>     val sparkConf = new SparkConf()
>>>>>     val ssc = new StreamingContext(sparkConf, Seconds(5))
>>>>>     val kafkaParams = Map[String, String]("metadata.broker.list" ->
>>>>> args(0))
>>>>>     val topics = args(1).split("\\,")
>>>>>     val directKafkaStream = KafkaUtils.createDirectStream[String,
>>>>> String, StringDecoder, StringDecoder](ssc, kafkaParams, topics.toSet)
>>>>>
>>>>>     directKafkaStream.foreachRDD { rdd =>
>>>>>       val offsets = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
>>>>>       val documents = rdd.mapPartitionsWithIndex { (i, kafkaEvent) =>
>>>>>       .....
>>>>>    }
>>>>>
>>>>> I understand that I just need a checkpoint if I need to recover the
>>>>> task it something goes wrong, right?
>>>>>
>>>>>
>>>>> 2015-06-27 9:39 GMT+02:00 Tathagata Das <tdas@databricks.com>:
>>>>>
>>>>>> How are you trying to execute the code again? From checkpoints, or
>>>>>> otherwise?
>>>>>> Also cc'ed Hari who may have a better idea of YARN related issues.
>>>>>>
>>>>>> On Sat, Jun 27, 2015 at 12:35 AM, Guillermo Ortiz <
>>>>>> konstt2000@gmail.com> wrote:
>>>>>>
>>>>>>> Hi,
>>>>>>>
>>>>>>> I'm executing a SparkStreamig code with Kafka. IçThe code was
>>>>>>> working but today I tried to execute the code again and I got
an exception,
>>>>>>> I dn't know what's it happening. right now , there are no jobs
executions
>>>>>>> on YARN.
>>>>>>> How could it fix it?
>>>>>>>
>>>>>>> Exception in thread "main" org.apache.spark.SparkException: Yarn
>>>>>>> application has already ended! It might have been killed or unable
to
>>>>>>> launch application master.
>>>>>>>         at
>>>>>>> org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:113)
>>>>>>>         at
>>>>>>> org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:59)
>>>>>>>         at
>>>>>>> org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:141)
>>>>>>>         at
>>>>>>> org.apache.spark.SparkContext.<init>(SparkContext.scala:379)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:642)
>>>>>>>         at
>>>>>>> org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:75)
>>>>>>>         at
>>>>>>> com.produban.metrics.MetricsTransfInternationalSpark$.main(MetricsTransfInternationalSpark.scala:66)
>>>>>>>         at
>>>>>>> com.produban.metrics.MetricsTransfInternationalSpark.main(MetricsTransfInternationalSpark.scala)
>>>>>>>         at sun.reflect.NativeMethodAccessorImpl.invoke0(Native
>>>>>>> Method)
>>>>>>>         at
>>>>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
>>>>>>>         at
>>>>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
>>>>>>>         at java.lang.reflect.Method.invoke(Method.java:606)
>>>>>>>         at
>>>>>>> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:569)
>>>>>>>         at
>>>>>>> org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:166)
>>>>>>>         at
>>>>>>> org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:189)
>>>>>>>         at
>>>>>>> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:110)
>>>>>>>         at
>>>>>>> org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
>>>>>>> *15/06/27 09:27:09 ERROR Utils: Uncaught exception in thread
delete
>>>>>>> Spark local dirs*
>>>>>>> java.lang.NullPointerException
>>>>>>>         at org.apache.spark.storage.DiskBlockManager.org
>>>>>>> $apache$spark$storage$DiskBlockManager$$doStop(DiskBlockManager.scala:161)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply$mcV$sp(DiskBlockManager.scala:141)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:139)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:139)
>>>>>>>         at
>>>>>>> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1617)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1.run(DiskBlockManager.scala:139)
>>>>>>> Exception in thread "delete Spark local dirs"
>>>>>>> java.lang.NullPointerException
>>>>>>>         at org.apache.spark.storage.DiskBlockManager.org
>>>>>>> $apache$spark$storage$DiskBlockManager$$doStop(DiskBlockManager.scala:161)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply$mcV$sp(DiskBlockManager.scala:141)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:139)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1$$anonfun$run$1.apply(DiskBlockManager.scala:139)
>>>>>>>         at
>>>>>>> org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1617)
>>>>>>>         at
>>>>>>> org.apache.spark.storage.DiskBlockManager$$anon$1.run(DiskBlockManager.scala:139)
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>
>>>>>
>>>>
>>>
>>
>

Mime
View raw message