spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Igor Berman <igor.ber...@gmail.com>
Subject Re: Avro SerDe Issue w/ Manual Partitions?
Date Thu, 03 Mar 2016 13:38:55 GMT
your field name is
*enum1_values*

but you have data
{ "foo1": "test123", *"enum1"*: "BLUE" }

i.e. since you defined enum and not union(null, enum)
it tries to find value for enum1_values and doesn't find one...

On 3 March 2016 at 11:30, Chris Miller <cmiller11101@gmail.com> wrote:

> I've been digging into this a little deeper. Here's what I've found:
>
> test1.avsc:
> ********************
> {
>   "namespace": "com.cmiller",
>   "name": "test1",
>   "type": "record",
>   "fields": [
>     { "name":"foo1", "type":"string" }
>   ]
> }
> ********************
>
> test2.avsc:
> ********************
> {
>   "namespace": "com.cmiller",
>   "name": "test1",
>   "type": "record",
>   "fields": [
>     { "name":"foo1", "type":"string" },
>     { "name":"enum1", "type": { "type":"enum", "name":"enum1_values",
> "symbols":["BLUE","RED", "GREEN"]} }
>   ]
> }
> ********************
>
> test1.json (encoded and saved to test/test1.avro):
> ********************
> { "foo1": "test123" }
> ********************
>
> test2.json (encoded and saved to test/test1.avro):
> ********************
> { "foo1": "test123", "enum1": "BLUE" }
> ********************
>
> Here is how I create the tables and add the data:
>
> ********************
> CREATE TABLE test1
> PARTITIONED BY (ds STRING)
> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
> STORED AS INPUTFORMAT
> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
> TBLPROPERTIES ('avro.schema.url'='hdfs:///path/to/schemas/test1.avsc');
>
> ALTER TABLE test1 ADD PARTITION (ds='1') LOCATION
> 's3://spark-data/dev/test1';
>
>
> CREATE TABLE test2
> PARTITIONED BY (ds STRING)
> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
> STORED AS INPUTFORMAT
> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
> TBLPROPERTIES ('avro.schema.url'='hdfs:///path/to/schemas/test2.avsc');
>
> ALTER TABLE test2 ADD PARTITION (ds='1') LOCATION
> 's3://spark-data/dev/test2';
> ********************
>
> And here's what I get:
>
> ********************
> SELECT * FROM test1;
> -- works fine, shows data
>
> SELECT * FROM test2;
>
> org.apache.avro.AvroTypeException: Found com.cmiller.enum1_values,
> expecting union
>     at
> org.apache.avro.io.ResolvingDecoder.doAction(ResolvingDecoder.java:292)
>     at org.apache.avro.io.parsing.Parser.advance(Parser.java:88)
>     at
> org.apache.avro.io.ResolvingDecoder.readIndex(ResolvingDecoder.java:267)
>     at
> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:155)
>     at
> org.apache.avro.generic.GenericDatumReader.readField(GenericDatumReader.java:193)
>     at
> org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:183)
>     at
> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151)
>     at
> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:142)
>     at
> org.apache.hadoop.hive.serde2.avro.AvroDeserializer$SchemaReEncoder.reencode(AvroDeserializer.java:111)
>     at
> org.apache.hadoop.hive.serde2.avro.AvroDeserializer.deserialize(AvroDeserializer.java:175)
>     at
> org.apache.hadoop.hive.serde2.avro.AvroSerDe.deserialize(AvroSerDe.java:201)
>     at
> org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:409)
>     at
> org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:408)
>     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>     at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>     at
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>     at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>     at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>     at scala.collection.TraversableOnce$class.to
> (TraversableOnce.scala:273)
>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>     at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>     at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>     at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
>     at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
>     at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>     at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>     at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>     at org.apache.spark.scheduler.Task.run(Task.scala:89)
>     at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>     at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>     at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>     at java.lang.Thread.run(Thread.java:745)
> ********************
>
> In addition to the above, I also tried putting the test Avro files on HDFS
> instead of S3 -- the error is the same. I also tried querying from Scala
> instead of using Zeppelin, and I get the same error.
>
> Where should I begin with troubleshooting this problem? This same query
> runs fine on Hive. Based on the error, it appears to be something in the
> deserializer though... but if it were a bug in the Avro deserializer, why
> does it only appear with Spark? I imagine Hive queries would be using the
> same deserializer, no?
>
> Thanks!
>
>
>
> --
> Chris Miller
>
> On Thu, Mar 3, 2016 at 4:33 AM, Chris Miller <cmiller11101@gmail.com>
> wrote:
>
>> Hi,
>>
>> I have a strange issue occurring when I use manual partitions.
>>
>> If I create a table as follows, I am able to query the data with no
>> problem:
>>
>> ********
>> CREATE TABLE test1
>> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
>> STORED AS INPUTFORMAT
>> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
>> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
>> LOCATION 's3://analytics-bucket/prod/logs/avro/2016/03/02/'
>> TBLPROPERTIES ('avro.schema.url'='hdfs:///data/schemas/schema.avsc');
>> ********
>>
>> If I create the table like this, however, and then add a partition with a
>> LOCATION specified, I am unable to query:
>>
>> ********
>> CREATE TABLE test2
>> PARTITIONED BY (ds STRING)
>> ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
>> STORED AS INPUTFORMAT
>> 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
>> OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
>> TBLPROPERTIES ('avro.schema.url'='hdfs:///data/schemas/schema.avsc');
>>
>> ALTER TABLE test7 ADD PARTITION (ds='1') LOCATION
>> 's3://analytics-bucket/prod/logs/avro/2016/03/02/';
>> ********
>>
>> This is what happens
>>
>> ********
>> SELECT * FROM test2 LIMIT 1;
>>
>> org.apache.avro.AvroTypeException: Found ActionEnum, expecting union
>>     at
>> org.apache.avro.io.ResolvingDecoder.doAction(ResolvingDecoder.java:292)
>>     at org.apache.avro.io.parsing.Parser.advance(Parser.java:88)
>>     at
>> org.apache.avro.io.ResolvingDecoder.readIndex(ResolvingDecoder.java:267)
>>     at
>> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:155)
>>     at
>> org.apache.avro.generic.GenericDatumReader.readField(GenericDatumReader.java:193)
>>     at
>> org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:183)
>>     at
>> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151)
>>     at
>> org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:142)
>>     at
>> org.apache.hadoop.hive.serde2.avro.AvroDeserializer$SchemaReEncoder.reencode(AvroDeserializer.java:111)
>>     at
>> org.apache.hadoop.hive.serde2.avro.AvroDeserializer.deserialize(AvroDeserializer.java:175)
>>     at
>> org.apache.hadoop.hive.serde2.avro.AvroSerDe.deserialize(AvroSerDe.java:201)
>>     at
>> org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:409)
>>     at
>> org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:408)
>>     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>     at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
>>     at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
>>     at scala.collection.Iterator$class.foreach(Iterator.scala:727)
>>     at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
>>     at
>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
>>     at
>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>>     at
>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>>     at scala.collection.TraversableOnce$class.to
>> (TraversableOnce.scala:273)
>>     at scala.collection.AbstractIterator.to(Iterator.scala:1157)
>>     at
>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>>     at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
>>     at
>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>>     at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
>>     at
>> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
>>     at
>> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:212)
>>     at
>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>>     at
>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
>>     at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
>>     at org.apache.spark.scheduler.Task.run(Task.scala:89)
>>     at
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>     at
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>     at
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>     at java.lang.Thread.run(Thread.java:745)
>> ********
>>
>> The data is exactly the same, and I can still go back and query the test1
>> table without issue. I don't have control over the directory structure, so
>> I need to add the partitions manually so that I can specify a location.
>>
>> For what it's worth, "ActionEnum" is the first field in my schema. This
>> same table and query structure works fine with Hive. When I try to run this
>> with SparkSQL, however, I get the above error.
>>
>> Anyone have any idea what the problem is here? Thanks!
>>
>> --
>> Chris Miller
>>
>
>

Mime
View raw message