Note that if you specify the schema that you expect when reading JSON you basically get the "relaxed" mode that you are asking for.  Records that don't match will end up with nulls.

The problem here is Spark SQL knows that the operation you are asking for is invalid given the set of data you let it infer the schema from so it won't even let you try.

On Wed, Mar 2, 2016 at 11:31 AM, Reynold Xin <> wrote:
Are you looking for "relaxed" mode that simply return nulls for fields that doesn't exist or have incompatible schema?

On Wed, Mar 2, 2016 at 11:12 AM, Ewan Leith <> wrote:
Thanks Michael, it's not a great example really, as the data I'm working with has some source files that do fit the schema, and some that don't (out of millions that do work, perhaps 10 might not).

In an ideal world for us the select would probably return the valid records only.

We're trying out the new dataset APIs to see if we can do some pre-filtering that way.

-dev +user

StructType(StructField(data,ArrayType(StructType(StructField(stuff,ArrayType(StructType(StructField(onetype,ArrayType(StructType(StructField(id,LongType,true), StructField(name,StringType,true)),true),true), StructField(othertype,ArrayType(StructType(StructField(company,StringType,true), StructField(id,LongType,true)),true),true)),true),true)),true),true))

Its not a great error message, but as the schema above shows, stuff is an array, not a struct.  So, you need to pick a particular element (using []) before you can pull out a specific field.  It would be easier to see this if you ran, which gives you a tree view.  Try the following."data.stuff[0].onetype")

On Wed, Mar 2, 2016 at 1:44 AM, Ewan Leith <> wrote:

When you create a dataframe using the API, if you pass in a schema that’s compatible with some of the records, but incompatible with others, it seems you can’t do a .select on the problematic columns, instead you get an AnalysisException error.


I know loading the wrong data isn’t good behaviour, but if you’re reading data from (for example) JSON files, there’s going to be malformed files along the way. I think it would be nice to handle this error in a nicer way, though I don’t know the best way to approach it.


Before I raise a JIRA ticket about it, would people consider this to be a bug or expected behaviour?


I’ve attached a couple of sample JSON files and the steps below to reproduce it, by taking the inferred schema from the simple1.json file, and applying it to a union of simple1.json and simple2.json. You can visually see the data has been parsed as I think you’d want if you do a .select on the parent column and print out the output, but when you do a select on the problem column you instead get an exception.


scala> val s1Rdd = sc.wholeTextFiles("/tmp/simple1.json").map(x => x._2)

s1Rdd: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[171] at map at <console>:27


scala> val s1schema =

s1schema: org.apache.spark.sql.types.StructType = StructType(StructField(data,ArrayType(StructType(StructField(stuff,ArrayType(StructType(StructField(onetype,ArrayType(StructType(StructField(id,LongType,true), StructField(name,StringType,true)),true),true), StructField(othertype,ArrayType(StructType(StructField(company,StringType,true), StructField(id,LongType,true)),true),true)),true),true)),true),true))



[WrappedArray(WrappedArray([WrappedArray([1,John Doe], [2,Don Joeh]),null], [null,WrappedArray([ACME,2])]))]

[WrappedArray(WrappedArray([null,WrappedArray([null,1], [null,2])], [WrappedArray([2,null]),null]))]



org.apache.spark.sql.AnalysisException: cannot resolve 'data.stuff[onetype]' due to data type mismatch: argument 2 requires integral type, however, 'onetype' is of string type.;

                at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)

                at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:65)

                at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:57)

                at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319)

                at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319)


(The full exception is attached too).


What do people think, is this a bug?




To unsubscribe, e-mail:
For additional commands, e-mail: