spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Hyukjin Kwon <gurwls...@gmail.com>
Subject Re: Error in spark-xml
Date Sun, 01 May 2016 13:45:37 GMT
To be more clear,

If you set the rowTag as "book", then it will produces an exception which
is an issue opened here, https://github.com/databricks/spark-xml/issues/92

Currently it does not support to parse a single element with only a value
as a row.


If you set the rowTag as "bkval", then it should work. I tested the case
below to double check.

If it does not work as below, please open an issue with some information so
that I can reproduce.


I tested the case above with the data below

<root>
  <bkval>
    <book id="bk113">bk_113</book>
    <book id="bk114">bk_114</book>
  </bkval>
  <bkval>
    <book id="bk114">bk_114</book>
    <book id="bk115">bk_116</book>
  </bkval>
  <bkval>
    <book id="bk116">bk_115</book>
    <book id="bk117">bk_116</book>
  </bkval>
</root>


I tested this with the codes below

val path = "path-to-file"
sqlContext.read
  .format("xml")
  .option("rowTag", "bkval")
  .load(path)
  .show()

‚Äč

Thanks!


2016-05-01 15:11 GMT+09:00 Hyukjin Kwon <gurwls223@gmail.com>:

> Hi Sourav,
>
> I think it is an issue. XML will assume the element by the rowTag as
> object.
>
>  Could you please open an issue in
> https://github.com/databricks/spark-xml/issues please?
>
> Thanks!
>
>
> 2016-05-01 5:08 GMT+09:00 Sourav Mazumder <sourav.mazumder00@gmail.com>:
>
>> Hi,
>>
>> Looks like there is a problem in spark-xml if the xml has multiple
>> attributes with no child element.
>>
>> For example say the xml has a nested object as below
>> <bkval>
>>         <book id="bk113">bk_113</book>
>>         <book id="bk114">bk_114</book>
>>  </bkval>
>>
>> Now if I create a dataframe starting with rowtag bkval and then I do a
>> select on that data frame it gives following error.
>>
>>
>> scala.MatchError: ENDDOCUMENT (of class
>> com.sun.xml.internal.stream.events.EndDocumentEvent) at
>> com.databricks.spark.xml.parsers.StaxXmlParser$.checkEndElement(StaxXmlParser.scala:94)
>> at
>> com.databricks.spark.xml.parsers.StaxXmlParser$.com$databricks$spark$xml$parsers$StaxXmlParser$$convertObject(StaxXmlParser.scala:295)
>> at
>> com.databricks.spark.xml.parsers.StaxXmlParser$$anonfun$parse$1$$anonfun$apply$4.apply(StaxXmlParser.scala:58)
>> at
>> com.databricks.spark.xml.parsers.StaxXmlParser$$anonfun$parse$1$$anonfun$apply$4.apply(StaxXmlParser.scala:46)
>> at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371) at
>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at
>> scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327) at
>> scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:308) at
>> scala.collection.Iterator$class.foreach(Iterator.scala:727) at
>> scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at
>> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at
>> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
>> at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
>> at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
>> at scala.collection.AbstractIterator.to(Iterator.scala:1157) at
>> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
>> at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at
>> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
>> at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at
>> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:215)
>> at
>> org.apache.spark.sql.execution.SparkPlan$$anonfun$5.apply(SparkPlan.scala:215)
>> at
>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
>> at
>> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1850)
>> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66) at
>> org.apache.spark.scheduler.Task.run(Task.scala:88) at
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214) at
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
>> at
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
>> at java.lang.Thread.run(Thread.java:745)
>>
>> However if there is only one row like below, it works fine.
>>
>> <bkval>
>>         <book id="bk113">bk_113</book>
>> </bkval>
>>
>> Any workaround ?
>>
>> Regards,
>> Sourav
>>
>>
>

Mime
View raw message