spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Davies Liu <dav...@databricks.com>
Subject Re: Re[8]: Spark 2.0: SQL runs 5x times slower when adding 29th field to aggregation.
Date Tue, 06 Sep 2016 18:27:10 GMT
I think the slowness is caused by generated aggregate method has more
than 8K bytecodes, than it's not JIT compiled, became much slower.

Could you try to disable the DontCompileHugeMethods by:

-XX:-DontCompileHugeMethods

On Mon, Sep 5, 2016 at 4:21 AM, Сергей Романов
<romanovsa@inbox.ru.invalid> wrote:
> Hi, Gavin,
>
> Shuffling is exactly the same in both requests and is minimal. Both requests
> produces one shuffle task. Running time is the only difference I can see in
> metrics:
>
> timeit.timeit(spark.read.csv('file:///data/dump/test_csv',
> schema=schema).groupBy().sum(*(['dd_convs'] * 57) ).collect, number=1)
> 0.713730096817
>  {
>     "id" : 368,
>     "name" : "duration total (min, med, max)",
>     "value" : "524"
>   }, {
>     "id" : 375,
>     "name" : "internal.metrics.executorRunTime",
>     "value" : "527"
>   }, {
>     "id" : 391,
>     "name" : "internal.metrics.shuffle.write.writeTime",
>     "value" : "244495"
>   }
>
> timeit.timeit(spark.read.csv('file:///data/dump/test_csv',
> schema=schema).groupBy().sum(*(['dd_convs'] * 58) ).collect, number=1)
> 2.97951102257
>
>   }, {
>     "id" : 469,
>     "name" : "duration total (min, med, max)",
>     "value" : "2654"
>   }, {
>     "id" : 476,
>     "name" : "internal.metrics.executorRunTime",
>     "value" : "2661"
>   }, {
>     "id" : 492,
>     "name" : "internal.metrics.shuffle.write.writeTime",
>     "value" : "371883"
>   }, {
>
> Full metrics in attachment.
>
> Суббота, 3 сентября 2016, 19:53 +03:00 от Gavin Yue
> <yue.yuanyuan@gmail.com>:
>
>
> Any shuffling?
>
>
> On Sep 3, 2016, at 5:50 AM, Сергей Романов <romanovsa@inbox.ru.INVALID>
> wrote:
>
> Same problem happens with CSV data file, so it's not parquet-related either.
>
> Welcome to
>       ____              __
>      / __/__  ___ _____/ /__
>     _\ \/ _ \/ _ `/ __/  '_/
>    /__ / .__/\_,_/_/ /_/\_\   version 2.0.0
>       /_/
>
> Using Python version 2.7.6 (default, Jun 22 2015 17:58:13)
> SparkSession available as 'spark'.
>>>> import timeit
>>>> from pyspark.sql.types import *
>>>> schema = StructType([StructField('dd_convs', FloatType(), True)])
>>>> for x in range(50, 70): print x,
>>>> timeit.timeit(spark.read.csv('file:///data/dump/test_csv',
>>>> schema=schema).groupBy().sum(*(['dd_convs'] * x) ).collect, number=1)
> 50 0.372850894928
> 51 0.376906871796
> 52 0.381325960159
> 53 0.385444164276
> 54 0.386877775192
> 55 0.388918161392
> 56 0.397624969482
> 57 0.391713142395
> 58 2.62714004517
> 59 2.68421196938
> 60 2.74627685547
> 61 2.81081581116
> 62 3.43532109261
> 63 3.07742786407
> 64 3.03904604912
> 65 3.01616096497
> 66 3.06293702126
> 67 3.09386610985
> 68 3.27610206604
> 69 3.2041969299
>
> Суббота, 3 сентября 2016, 15:40 +03:00 от Сергей Романов
> <romanovsa@inbox.ru.INVALID>:
>
> Hi,
>
> I had narrowed down my problem to a very simple case. I'm sending 27kb
> parquet in attachment. (file:///data/dump/test2 in example)
>
> Please, can you take a look at it? Why there is performance drop after 57
> sum columns?
>
> Welcome to
>       ____              __
>      / __/__  ___ _____/ /__
>     _\ \/ _ \/ _ `/ __/  '_/
>    /__ / .__/\_,_/_/ /_/\_\   version 2.0.0
>       /_/
>
> Using Python version 2.7.6 (default, Jun 22 2015 17:58:13)
> SparkSession available as 'spark'.
>>>> import timeit
>>>> for x in range(70): print x,
>>>> timeit.timeit(spark.read.parquet('file:///data/dump/test2').groupBy().sum(*(['dd_convs']
>>>> * x) ).collect, number=1)
> ...
> SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
> SLF4J: Defaulting to no-operation (NOP) logger implementation
> SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further
> details.
> 0 1.05591607094
> 1 0.200426101685
> 2 0.203800916672
> 3 0.176458120346
> 4 0.184863805771
> 5 0.232321023941
> 6 0.216032981873
> 7 0.201778173447
> 8 0.292424917221
> 9 0.228524923325
> 10 0.190534114838
> 11 0.197028160095
> 12 0.270443916321
> 13 0.429781913757
> 14 0.270851135254
> 15 0.776989936829
> 16 0.233337879181
> 17 0.227638959885
> 18 0.212944030762
> 19 0.2144780159
> 20 0.22200012207
> 21 0.262261152267
> 22 0.254227876663
> 23 0.275084018707
> 24 0.292124032974
> 25 0.280488014221
> 16/09/03 15:31:28 WARN Utils: Truncated the string representation of a plan
> since it was too large. This behavior can be adjusted by setting
> 'spark.debug.maxToStringFields' in SparkEnv.conf.
> 26 0.290093898773
> 27 0.238478899002
> 28 0.246420860291
> 29 0.241401195526
> 30 0.255286931992
> 31 0.42702794075
> 32 0.327946186066
> 33 0.434395074844
> 34 0.314198970795
> 35 0.34576010704
> 36 0.278323888779
> 37 0.289474964142
> 38 0.290827989578
> 39 0.376291036606
> 40 0.347742080688
> 41 0.363158941269
> 42 0.318687915802
> 43 0.376327991486
> 44 0.374994039536
> 45 0.362971067429
> 46 0.425967931747
> 47 0.370860099792
> 48 0.443903923035
> 49 0.374128103256
> 50 0.378985881805
> 51 0.476850986481
> 52 0.451028823853
> 53 0.432540893555
> 54 0.514838933945
> 55 0.53990483284
> 56 0.449142932892
> 57 0.465240001678 // 5x slower after 57 columns
> 58 2.40412116051
> 59 2.41632795334
> 60 2.41812801361
> 61 2.55726218224
> 62 2.55484509468
> 63 2.56128406525
> 64 2.54642391205
> 65 2.56381797791
> 66 2.56871509552
> 67 2.66187620163
> 68 2.63496208191
> 69 2.81545996666
>
>
> Sergei Romanov
>
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org
>
> Sergei Romanov
>
> <bad.csv.tgz>
>
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org
>
>
>
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org

---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscribe@spark.apache.org


Mime
View raw message