spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Gourav Sengupta <gourav.sengu...@gmail.com>
Subject Re: Broadcasting huge array or persisting on HDFS to read on executors - both not working
Date Thu, 12 Apr 2018 12:19:38 GMT
Hi,

There is an option for Stratified Sampling available in SPARK:
https://spark.apache.org/docs/latest/mllib-statistics.html#stratified-sampling
.

Also there is a method called randomSplit which may be called on dataframes
in case we want to split them into training and test data.

Please let me know whether using any of these built in functions helps or
not.


Regards,
Gourav

On Thu, Apr 12, 2018 at 3:25 AM, surender kumar <
skiitd80@yahoo.co.uk.invalid> wrote:

> Thanks Matteo, this should work!
>
> -Surender
>
>
> On Thursday, 12 April, 2018, 1:13:38 PM IST, Matteo Cossu <
> elcossu@gmail.com> wrote:
>
>
> I don't think it's trivial. Anyway, the naive solution would be a cross
> join between user x items. But this can be very very expensive. I've
> encountered once a similar problem, here how I solved it:
>
>    - create a new RDD with (itemID, index) where the index is a unique
>    integer between 0 and the number of items
>    - for every user sample n items by generating randomly n distinct
>    integers between 0 and the number of items (e.g. with rand.randint()), so
>    you have a new RDD (userID, [sample_items])
>    - flatten all the list in the previously created RDD and join them
>    back with the RDD with (itemID, index) using index as join attribute
>
> You can do the same things with DataFrame using UDFs.
>
> On 11 April 2018 at 23:01, surender kumar <skiitd80@yahoo.co.uk> wrote:
>
> right, this is what I did when I said I tried to persist and create an RDD
> out of it to sample from. But how to do for each user?
> You have one rdd of users on one hand and rdd of items on the other. How
> to go from here? Am I missing something trivial?
>
>
> On Thursday, 12 April, 2018, 2:10:51 AM IST, Matteo Cossu <
> elcossu@gmail.com> wrote:
>
>
> Why broadcasting this list then? You should use an RDD or DataFrame. For
> example, RDD has a method sample() that returns a random sample from it.
>
> On 11 April 2018 at 22:34, surender kumar <skiitd80@yahoo.co.uk.invalid>
> wrote:
>
> I'm using pySpark.
> I've list of 1 million items (all float values ) and 1 million users. for
> each user I want to sample randomly some items from the item list.
> Broadcasting the item list results in Outofmemory error on the driver,
> tried setting driver memory till 10G.  I tried to persist this array on
> disk but I'm not able to figure out a way to read the same on the workers.
>
> Any suggestion would be appreciated.
>
>
>
>

Mime
View raw message