spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From "Shixiong(Ryan) Zhu" <shixi...@databricks.com>
Subject Re: PySpark structured streaming job throws socket exception
Date Thu, 04 Oct 2018 21:26:47 GMT
As far as I know, the error log in updateAccumulators will not fail a Spark
task. Did you see other error messages?

Best Regards,
Ryan


On Thu, Oct 4, 2018 at 2:14 PM mmuru <mmuru98@gmail.com> wrote:

> Hi,
>
> Running Pyspark structured streaming job on K8S with 2 executor pods. The
> driver pod failed with the following up exception. It fails consistently
> after 3 to 6hrs of running.
>
> Any idea how to fix this exception. I really appreciate your help.
>
>
> 2018-10-04 18:48:27 ERROR DAGScheduler:91 - Failed to update accumulators
> for task 21
> java.net.SocketException: Connection reset
>         at java.net.SocketInputStream.read(SocketInputStream.java:210)
>         at java.net.SocketInputStream.read(SocketInputStream.java:141)
>         at java.net.SocketInputStream.read(SocketInputStream.java:224)
>         at
> org.apache.spark.api.python.PythonAccumulatorV2.merge(PythonRDD.scala:659)
>         at
>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1257)
>         at
>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1249)
>         at
>
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>         at
>
> org.apache.spark.scheduler.DAGScheduler.updateAccumulators(DAGScheduler.scala:1249)
>         at
>
> org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1331)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2100)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2052)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2041)
>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
> 2018-10-04 18:48:27 ERROR DAGScheduler:91 - Failed to update accumulators
> for task 22
> java.net.SocketException: Broken pipe (Write failed)
>         at java.net.SocketOutputStream.socketWrite0(Native Method)
>         at
> java.net.SocketOutputStream.socketWrite(SocketOutputStream.java:111)
>         at java.net.SocketOutputStream.write(SocketOutputStream.java:155)
>         at
> java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:82)
>         at
> java.io.BufferedOutputStream.flush(BufferedOutputStream.java:140)
>         at java.io.DataOutputStream.flush(DataOutputStream.java:123)
>         at
> org.apache.spark.api.python.PythonAccumulatorV2.merge(PythonRDD.scala:657)
>         at
>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1257)
>         at
>
> org.apache.spark.scheduler.DAGScheduler$$anonfun$updateAccumulators$1.apply(DAGScheduler.scala:1249)
>         at
>
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>         at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>         at
>
> org.apache.spark.scheduler.DAGScheduler.updateAccumulators(DAGScheduler.scala:1249)
>         at
>
> org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:1331)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2100)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2052)
>         at
>
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2041)
>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>
>
>
> --
> Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org
>
>

Mime
View raw message