spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From Enrico Minack <m...@Enrico.Minack.dev>
Subject Re: Time-based frequency table at scale
Date Wed, 11 Mar 2020 18:51:25 GMT
An interesting puzzle indeed.

What is your measure of "that scales"? Does not fail, does not spill, 
does not need a huge amount of memory / disk, is O(N), processes X 
records per second and core?

Enrico

Am 11.03.20 um 16:59 schrieb sakag:
> Hi all,
>   
> We have a rather interesting use case, and are struggling to come up with an
> approach that scales. Reaching out to seek your expert opinion/feedback and
> tips.
>   
> What we are trying to do is to find the count of numerical ids over a
> sliding time window where each of our data records has a timestamp and a set
> of numerical ids in the below format.
>   
> timestamp | ids
> 1  [1,2,3,8]
> 1  [1,2]
> 2  [1,2,3,4]
> 2  [1, 10]
>   
> What we are looking to get as output is:
>   
> timestamp | id_count_map
> 1 | {1: 2, 2: 2, 3: 1, 4:0, 5:0, 6:0, 8:1}
> 2 | {1: 2, 2:1, 3: 1, 4: 1, 5:0, 6:0, 7:0, 8:0, 9:0, 10:1}
>   
> This gives us the frequency of occurrence of these ids over time periods.
> Please note that the output expected is in a dense format.
>   
> However, we are running into scale issues with the data that has these
> characteristics.
>   
> - 500 million records - Total ~100 GB
> - Each record can have 500 elements in the ids column
> - Max id value (length of id_count_map) is 750K
>   
> We have tried the below approaches to achieve this
> 1) Expanding ids to a dense, frequency-based vector and then doing a
> row-wise sum over a Window partitioned by timestamp
> 2) Converting ids into a SparseVector and computing the L1 norm (using
> Summarizer) over a Window partitioned by timestamp
> 3) GroupBy/aggregating ids by timestamp, converting to a sparse,
> frequency-based vector using collections.Counter, and expanding to a dense
> format
> 4) GroupBy/aggregating ids by timestamp, converting to a sparse,
> frequency-based vector using CountVectorizer, and then expanding to a dense
> format
>   
> Any other approaches we could try?
>   
> Thanks!
> Sakshi
>   
>
>
>
> --
> Sent from: http://apache-spark-user-list.1001560.n3.nabble.com/
>
> ---------------------------------------------------------------------
> To unsubscribe e-mail: user-unsubscribe@spark.apache.org
>


---------------------------------------------------------------------
To unsubscribe e-mail: user-unsubscribe@spark.apache.org


Mime
View raw message