spark-user mailing list archives

Site index · List index
Message view « Date » · « Thread »
Top « Date » · « Thread »
From muru <mmur...@gmail.com>
Subject Re: Pyspark: Issue using sql in foreachBatch sink
Date Tue, 04 Aug 2020 02:41:46 GMT
Thanks Jungtaek for your help.

On Fri, Jul 31, 2020 at 6:31 PM Jungtaek Lim <kabhwan.opensource@gmail.com>
wrote:

> Python doesn't allow abbreviating () with no param, whereas Scala does.
> Use `write()`, not `write`.
>
> On Wed, Jul 29, 2020 at 9:09 AM muru <mmuru98@gmail.com> wrote:
>
>> In a pyspark SS job, trying to use sql instead of sql functions in
>> foreachBatch sink
>> throws AttributeError: 'JavaMember' object has no attribute 'format'
>> exception.
>> However, the same thing works in Scala API.
>>
>> Please note, I tested in spark 2.4.5/2.4.6 and 3.0.0 and got the same
>> exception.
>> Is it a bug or known issue with Pyspark implementation? I noticed that I
>> could perform other operations except the write method.
>>
>> Please, let me know how to fix this issue.
>>
>> See below code examples
>> # Spark Scala method
>> def processData(batchDF: DataFrame, batchId: Long) {
>>    batchDF.createOrReplaceTempView("tbl")
>>    val outdf=batchDF.sparkSession.sql("select action, count(*) as count
>> from tbl where date='2020-06-20' group by 1")
>>    outdf.printSchema()
>>    outdf.show
>>    outdf.coalesce(1).write.format("csv").save("/tmp/agg")
>> }
>>
>> ## pyspark python method
>> def process_data(bdf, bid):
>>   lspark = bdf._jdf.sparkSession()
>>   bdf.createOrReplaceTempView("tbl")
>>   outdf=lspark.sql("select action, count(*) as count from tbl where
>> date='2020-06-20' group by 1")
>>   outdf.printSchema()
>>   # it works
>>   outdf.show()
>>   # throws AttributeError: 'JavaMember' object has no attribute 'format'
>> exception
>>   outdf.coalesce(1).write.format("csv").save("/tmp/agg1")
>>
>> Here is the full exception
>> 20/07/24 16:31:24 ERROR streaming.MicroBatchExecution: Query [id =
>> 854a39d0-b944-4b52-bf05-cacf998e2cbd, runId =
>> e3d4dc7d-80e1-4164-8310-805d7713fc96] terminated with error
>> py4j.Py4JException: An exception was raised by the Python Proxy. Return
>> Message: Traceback (most recent call last):
>>   File
>> "/Users/muru/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py",
>> line 2381, in _call_proxy
>>     return_value = getattr(self.pool[obj_id], method)(*params)
>>   File "/Users/muru/spark/python/pyspark/sql/utils.py", line 191, in call
>>     raise e
>> AttributeError: 'JavaMember' object has no attribute 'format'
>> at py4j.Protocol.getReturnValue(Protocol.java:473)
>> at py4j.reflection.PythonProxyHandler.invoke(PythonProxyHandler.java:108)
>> at com.sun.proxy.$Proxy20.call(Unknown Source)
>> at
>> org.apache.spark.sql.execution.streaming.sources.PythonForeachBatchHelper$$anonfun$callForeachBatch$1.apply(ForeachBatchSink.scala:55)
>> at
>> org.apache.spark.sql.execution.streaming.sources.PythonForeachBatchHelper$$anonfun$callForeachBatch$1.apply(ForeachBatchSink.scala:55)
>> at
>> org.apache.spark.sql.execution.streaming.sources.ForeachBatchSink.addBatch(ForeachBatchSink.scala:35)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5$$anonfun$apply$17.apply(MicroBatchExecution.scala:537)
>> at
>> org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:80)
>> at
>> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:127)
>> at
>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:75)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5.apply(MicroBatchExecution.scala:535)
>> at
>> org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
>> at
>> org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
>> at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org
>> $apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:534)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:198)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
>> at
>> org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
>> at
>> org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:166)
>> at
>> org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
>> at
>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
>> at org.apache.spark.sql.execution.streaming.StreamExecution.org
>> $apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:281)
>> at
>> org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:193)
>>
>>

Mime
View raw message